If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-128x-4096=0
a = 16; b = -128; c = -4096;
Δ = b2-4ac
Δ = -1282-4·16·(-4096)
Δ = 278528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{278528}=\sqrt{16384*17}=\sqrt{16384}*\sqrt{17}=128\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-128\sqrt{17}}{2*16}=\frac{128-128\sqrt{17}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+128\sqrt{17}}{2*16}=\frac{128+128\sqrt{17}}{32} $
| 17=+x | | 17=14*x | | 9-27t=27+9 | | 2x-1÷6=10.5 | | 0,5x+0,2x=52,3 | | 5x(2x-4)=4+6x | | 17+5x=3x+12 | | -a=4+10 | | 7t+t=380-20 | | 68-v=184 | | 8v+6=-35 | | 5x+3=-7x+27 | | 2y=6×+2 | | 6{5-2v}=-4{3v+1} | | -66=(x-9( | | x5(x−4)=−60 | | Y=3x2+18 | | 4x-12=8x+ | | x3+6x2-11x-30=0 | | 5/7x−1/2=−3 | | 2^{x}=9 | | n+3+5n=21 | | a+2+4a=12 | | 2x-6=34 | | 2a+2+3a+3=10 | | 4z/7-8=-5 | | 3^x+^1+3^x=108 | | x+1/4=2*x*1/4 | | 9n-8-n=8 | | s4+39=139 | | 9(k-2)=6 | | 10h+h=88 |